US ERA ARCHIVE DOCUMENT

Update on Research Using in vitro and Computer-based Tools for Screening Potential Estrogenic Activity

Nov. 2008 - PPDC

P. Schmieder
EPA, ORD,
National Health and Environmental Effects Research Laboratory
Mid-Continent Ecology Division
Duluth, MN

Quantitative Structure-Activity Relationships Assumptions

- A chemical's structure imparts properties
- A group of chemicals that produce the same biological activity (toxicity; adverse effect) have something similar about their chemistry (structure)
- Goal is to quantify 'structural similarity' imparting biological activity;
 identify which other chemicals may be 'similar' with the
 assumption that an untested chemical may produce the same activity

Chemical similarity is defined in the context of biological similarity

- Robustness Depends on:
 - Well-defined biological system; Well-characterized chemistry
 - Well-defined application
 - Risk context What's the question being asked problem definition

QSAR Assumption

Toxic potency is correlated to chemical concentration at the site of action

-C. Hansch

Well-defined system (chemistry and biology)

Well-Defined Biological System

(What do you know and what are you assuming)

- Is the chemical administered what you thought it was
 - Impurities
- Metabolism
 - Is the system used for collection of empirical data capable of xenobiotic metabolism?
 - Is what you're measuring due to parent chemical or to a metabolite?

Kinetics

- What do you understand about the chemical kinetics within the system?
- Is the chemical in solution
 - Bound and unavailable
 - Loss to hydrolysis

Has chemical form and/or concentration been measured in the biological system upon which the QSAR is based

QSAR Approach

- QSAR is approach to help think about, hypothesize, and investigate, in a systematic manner how a chemical is most likely to interact with a biological system and what adverse effect might be the consequence of that interaction
- QSAR depends upon a well-defined biological system
- QSAR for large diverse chemical inventories is an Iterative process
- How QSAR used depends upon the regulatory context
 - Defining the regulatory domain is non-trivial; identify the exact chemicals and verify structures
 - Defining the regulatory question is essential; regulatory acceptance criteria are dependent upon the use

Risk Context

Development and use of a QSAR in regulatory risk assessment requires clear problem definition

- The purpose of the QSAR application must be well-defined (e.g., priority setting for testing, and chemical-specific risk assessment are two very different purposes – different acceptance criteria)
- The chemicals of regulatory concern must be defined to establish an appropriate training set for QSAR development and/or to assess appropriateness of QSAR application
 - Regulatory Domain
 - Applicability Domain of QSAR (dependent on Training Set)

A QSAR can only be as good as the underlying toxicological understanding and data it is based upon

- Toxicological activity is assessed based on a well-defined endpoint in a well-defined assay
 - e.g., chemical dosimetry –
 - if you assume parent chemical is responsible for biological activity but in fact a metabolite produced toxicity, then you're working from wrong structure
 - If you assume chemical was 100% available in your system but in fact 80% was loss due to volatility, or binding to glassware, unavailable in vehicle administered, etc then your concentration may have to be corrected

Today's Research Update: Developing the Tools to move EPA toward the New Paradigm

- Use <u>screening and priority setting</u> to focus on the most plausible toxicological potential for chemical or group of chemicals, not all possible <u>adverse outcomes</u>.
- Challenge of implementing FQPA
 - Endocrine Disruptors How to prioritize and efficiently test a large number of chemicals while still carrying out existing chemical (new and old) evaluation programs
- Hypothesis-driven approach

QSARs for Prioritization

Food Quality Protection Act -

Need to prioritize *in vivo* testing options for classes of compounds where 'endocrine data' is lacking:

- Inert ingredients used in formulations of pesticides used on crops
- Antimicrobial active ingredient pesticides

Prioritize -

- Based on effect endpoint(s) in combination with existing exposure estimates
- Use QSARs to estimate potential for 'estrogenic activity' for untested inerts and antimicrobial pesticides

Research Focus:

- Adverse outcome pathway:
 - Reproductive impairment through the ER-mediated pathway
- Chemicals:
 - Inert ingredients
 - Antimicrobials
- Hypothesis-driven approach:
 - Chemicals that have similar activity will have similar structure; quantifying the structural similarity will allow extrapolation across chemicals

Research Approach:

- Test a 'representative' chemicals in vitro to extrapolated potential for activity to untested
- Chemical Class Approach based on mechanism:
 - What types of chemicals can interact with the ER and which ones can't
- in vitro assays:
 - ER binding displacement
 - ER-mediated gene activation

Adverse Outcome Pathway ER-mediated Reproductive Impairment

Measurements made across levels of biological organization

Toxicity Pathway

Defining the Problem: Prioritizing estrogenic potential of Food Use Inert Ingredients

Inert chemicals in Pesticides used on Food Crops The 2004 List included:

```
893 entries = 393 discrete chemicals + 500 non-discrete substances (44% discrete : 56% non-discrete)
```

393 discrete chemicals include:

366 organics (93%)

24 inorganics (6%)

3 organometallics (1%)

500 non-discrete substances include:

147 polymers of mixed chain length

170 mixtures

183 undefined substances

Defining the Problem: Prioritizing Estrogenic Potential of Antimicrobial Pesticides

Antimicrobials and Sanitizers List included:

```
299 = 211 discrete chemicals + 88 non-discrete substances (71% discrete : 29% non-discrete)
```

211 discrete chemicals include: 153 organics (72%)

52 inorganics (25%)

6 organometallics-acyclic (3%)

88 non-discrete substances include:

25 polymers of mixed chain length

35 mixtures

28 undefined substances

Data Example - primary *In vitro* assay used : **Estrogen Receptor Binding Displacement Assay**

Data example – Confirmatory *in vitro* Assay: **Gene Activation**

Research Approach:

 Test a few 'representative' chemicals in vitro to extrapolate to others

- Chemical Class Approach based on mechanism:
 - What types of chemicals can interact with the ER and which ones can't
 - chemicals selected to investigate mechanisms of binding the ER
 - chemicals selected to cover classes found on list

Homologous Series Alkylphenols

Alkylphenols

Alkylphenols – (p-branched chain)

rtER tested chemicals - Training Set **C3** C2 C4 C₀ **C1** -OH OH -OH H_3C H₃C H₃C H₃C Log Kow = 1.50 _{msrd} 3.20 msrd 3.65 msrd 1.97 msrd 2.47 msrd C3_{H₃C} C4 **C4** H₃C **C5** CH₃ H₃C-H₃C ĊH₃ H₃C 2.90 msrd 3.31 msrd 3.32 msrd 3.83 msrd **C7 C8** C6 C9 H₃C 4.62 calc 4.15 msrd 5.68 calc 5.76 msrd **C12 C7** C10 C6 **C8** CH₃ CH_3 H₃C ĊH₃ ĊН₃ ĊH₃ H₃Ć ĊH₃ H₃C H₃C H₃C 4.36 clog 4.89 clog 5.16 clog 6.61 clog 7.91 msrd

Inventory

Inventory

Alkylanilines – (p-n chain)

rtER tested chemicals - Training Set

Figure 5. Relationship between Log Kow and RBA for alkylanilines.

Rainbow Trout ER binding Affinity vs. Log Kow RBA = relative binding affinity compared to Estradiol at 100%

LogKow Cutoffs vary with Chemical Subgroups

p,n-Alkyl Phenols

p,n-Alkyl Anilines

p,n-Alkyl Chloro benzenes

p,n-Alkyl Cyclo

hexanols

✓ → OH
1.23 m

4.94 c

H₃C

Rainbow Trout ER binding Affinity vs. Log Kow

RBA = relative binding affinity compared to Estradiol at 100%

Alkylaromatic sulfonic acids

rtER tested chemicals - Training Set

Inventory

Results:

Chemical has Low Potential for Activity if:

- -Belongs to a group where testing showed no evidence of ER interaction (RBA < 0.00001);
- -LogKow <1.3, or meets other group-specific LogKow cutoffs

General characteristics of these chemicals:

- -Acyclic (e.g., no benzene rings)
- -Cyclic, but does not contain a likely H-bonding group;

Results:

Chemical has Higher Potential for Activity if:

- -Belongs to chemical group with evidence of ER interaction, (RBA > 0.00001), and:
- -LogKow > 1.3, and < any chemical group-specific high LogKow cutoff

General characteristics of these chemicals:

- -Contains at least one cycle (e.g., benzene ring);
- -Contains a possible H-bonding group;

Food Use Inerts, and Antimicrobials

Food Use Inerts		Antimicrobials
<u>393</u>	Total Chemicals	<u>211</u>
378 (96%)	Lower Probability	196 (93%)
15 (4%)	Higher Probability	15 (7%)

ER Binders

Adverse Outcome Pathway ER-mediated Reproductive Impairment

Measurements made across levels of biological organization

Summary

- Hypothesis-driven approach
 - Adverse Outcome pathway (in vitro linked to in vivo)
 - Strategic chemical selection and testing to cover types of chemicals found on the list that needed prioritizing
 - Mechanistic hypothesis (LogKow; low affinity binding types)
- Derived a QSAR-based Decision Support System that can be applied to next chemical list, and expanded where needed (chemical classes not yet tested)
- Developed <u>priority setting</u> tool to focus on the 4 to 7% of chemicals with plausible toxicological potential for an important <u>adverse outcome</u>.

Developing an Approach and Tools to move EPA toward the new paradigm